Additively Manufactured RF/Wireless Modules for IoT, mmW and WSN applications

In this talk, inkjet-/3D-printed flexible antennas, RF electronics and sensors fabricated on paper and other polymer (e.g.LCP) substrates are introduced as a system-level solution for ultra-low-cost mass production of Millimeter-Wave Modules for Communication, Energy Harvesting, Radar and Sensing applications. Prof. Tentzeris will briefly touch up the state-of-the-art area of fully-integrated wireless sensor modules on paper or flexible LCP and show the first ever 2D sensor integration with an RFID tag module on paper, as well as numerous 3D and 4D multilayer paper-based and LCP-based RF/microwave structures, that could potentially set the foundation for the truly convergent wireless sensor ad-hoc networks of the future with enhanced cognitive intelligence and "rugged" packaging. Prof. Tentzeris will discuss issues concerning the power sources of "near-perpetual" RF modules, including flexible miniaturized batteries as well as power-scavenging approaches involving thermal, EM, vibration and solar energy forms. The final step of the presentation will involve examples from mmW wearable (e.g. biomonitoring) antennas and RF modules, as well as the first examples of the integration of ultrabroadband (Gb/sec) inkjet-printed nanotechnology-based communication modules as well as wireless (e.g.CNT) sensors on paper and organic substrates for Internet of Things (IoT), 5G and autonomous vehicles applications. It has to be noted that the talk will review and present challenges for inkjet-printed organic active and nonlinear devices as well as future directions in the area of environmentally-friendly ("green") RF electronics and "smart-skin' conformal sensors.