Nonlinearity and Power Handling Characterization of an Optically Reconfigurable Microwave Switch

This paper presents a highly linear optically reconfigurable microwave switch with high power handling ability. A silicon superstrate with bottom illumination is employed. A transparent substrate is used and two different microstrip gap distances are characterized by two-tone nonlinearity measurement with different tone spacings and optical powers. A maximum third order intercept point referred to input power of +78.5dBm has been obtained and the maximum microwave power tested was over 30W per tone close to 2 GHz. Thermal imaging has been used to observe the device hot-spots as a function of RF power.